
Appendix B Simulations for Convergence of Beliefs

Figure 10 presents a simulation result for the dynamics of beliefs for a sequence
of signals that are drawn randomly. In this simulation, there are two possible states
{H,L} and the agent begins with a prior of 0.5 that the state is H. In each period,
the agent observes an independently drawn signal that predicts the state accurately
75% of the time. Supposing the drawn state is H, we randomly draw a sequence of
signals and plot the beliefs of various updating rules over time.

Overreaction and base rate neglect are modeled using the Grether (1980) model,
with a = 0.5 for the agent with base rate neglect and b = 1.5 for the agent with
overreaction. For the incorrect prior, the starting prior was 0.25 instead of 0.5, and
beliefs are updated with Bayes’ rule. For the asymmetric updating pattern, we use
the Hagmann and Loewenstein (2017) model, setting the reference belief to 0 and λ

to 0.75. The weight attached to the reference belief is 0.25.

Figure 10: Simulation result showing the dynamics of beliefs.
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Appendix C Alternative Posterior Fittings

C.1 Fitting Method Descriptions

In this section, we describe other methods we tried to fit the posteriors to the
data besides fitting log normal distributions directly to the OO2b responses. The
effects of these alternate fitting methods are given in the section after.

C.1.1 Log Normal Fitting, Recovered Individual Offer Distribution

The first alternative way we tried was to back out the offer distribution for
individual wage offers rather than directly fitting the distribution implied by OO2b. In
the main paper, we fit the data with a log normal distribution because observed wages
have been found to be generally log normal. Since the question asks about offers the
agent is most likely to accept, beliefs about these offers are likely to more closely reflect
beliefs about accepted wages and thus also follow a log normal distribution. However,
the best wage offer distribution is a function of the individual wage distribution and
the number of offers the respondent expects. The latter is likely to be a function of
the respondent’s search effort. For instance, if the respondent is actively searching
for a job, the worker may expect to receive more job offers, and the respondent will
report a “better” best-wage distribution. This makes it challenging to deduce if the
respondents are Bayesian if the search effort differs across time. To alleviate this
concern, we estimate their single-wage distribution using the data and fit it as a
robustness check.

We recover the single-wage offer using the following procedure. Assuming that all
wages are drawn from the same single wage offer distribution independently, we let the
CDF from a single wage offer be F (w), the CDF of the maximum wage distribution
from n offer is F n(w). From the maximum wage distribution given in “OO2b,” we
take the nth root to obtain the CDF of the individual wage offer. For individuals
who expect to receive zero wage offers, we assume the distribution they report in this
question is the distribution of the single wage offer distribution.

C.1.2 Extreme Value Fitting

We next tried to fit an extreme value distribution to the data. The motivation
for this was that question OO2a2 was about the “best” offer an individual received.
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Our intuition is that this would be the highest (maximum) offer, on average. We
therefore used SMM to fit location and scale parameters for a Gumbel distribution
to the data, similar to how we fit mean and variance parameters for the log normal
distributions.

C.1.3 Kernel-Fitted Posterior

Finally, we also estimated the probability density function of the posterior by
considering the midpoint of each bin as representative of samples drawn from the
bin. The reported bin probability from question OO2b was considered as if it were
the percentage of samples drawn from the bin. The kernel density estimator was
then applied to logged values of the six bin midpoints. That is, for a value x on the
logged posterior distribution corresponding to question OO2b, probability density
was estimated as

fh(x) =
6∑

i=1

wiKh(x−mi)

where wi was the probability assigned to each of the six bins, mi was the logged value
of the ith bin’s midpoint, and h was the bandwidth. h was selected for each individual
using the simulated method of moments to minimize the error between the cumulative
fitted density over the bin and reported density over the bin. The Gaussian kernel
was used.

Note, however, that the top bin is unbounded and that the bottom bin is much
larger than the others in the survey question. To allow for assigning the top bin a
point for use in the density estimation, the top bin was assumed to be from 120% to
130% of the response of question OO2a2, rather than from 120% to infinity as on the
actual questionnaire. This let the top bin cover as much of the distribution as the
other bins.

For the bottom bin, we tried two different specifications. In the “restricted”
method, we assumed the bottom bin was 70% to 80% of the OO2a2. This meant that
each bin would have equal width (10%) and that the midpoint for the bottom bin
would be assigned to 75% of OO2a2, something we expected would be closer to where
individuals would place the actual weight of the distribution (since 40% offers could
be very low or unrealistic, depending on the value of OO2a2). In the “unrestricted”
method, we assumed the bottom bin was between 0% and 80% as explicitly defined
on the survey, so that the midpoint of the bottom bin would be 40% of OO2a2.
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C.2 Model Fit and Estimate Results by Method

The table below gives the average fitting error (mean squared error) for each
method described in the previous section, as well as for the main method used in the
paper. The log normal distributions fit the best, but each of the fittings not based on
kernel estimation is very close. The kernel-based methods have worse fits than the
other methods by a noticeable margin. The fitting errors are very similar whether
we consider only the first updates or the full dataset.50 Therefore, our ability to fit
posteriors seems about the same for both second and third surveys.

Distribution Update MSE Average MSE Standard Deviation
Log normal, 1 .0055 .0106

Best Wage Offer 2 .0053 .0106
Log normal, 1 .0052 .0102

Recovered Single Wage Offer 2 .0050 .0101

Gumbel 1 .0056 .0129
2 .0053 .0131

Midpoint Kernel, 1 .0714 .0421
Restricted 2 .0721 .0412

Midpoint Kernel, 1 .0630 .0456
Unrestricted 2 .0638 .0446

Table 9: Average mean squared error by data fitting method and update number.

In the next table, we see whether changing the fitting method impacts our main
results. We find large normalized statistics for all of the non-kernel methods, and the
other statistics seem fairly close to each other, regardless of fitting method. The non-
kernel methods have much lower normalized statistics, but it should be noted that
they also have much worse fit. Therefore, these results suggest that our results are
not very sensitive to which distribution we fit. Finally, we note that the main results
we get are very similar whether we use direct survey responses from OO2b or recover
the individual wage distribution. Thus, our result of non-Bayesianism appears robust
to concerns over the number of offers expected by subjects in our sample.

50First updates include individuals without second updates.
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Appendix D Additional Figures and Tables

Figure 11 below shows the relationship between the excess movement statistics
and the absolute error in the prior beliefs. We can see that the absolute error is
increasing and convex in the excess belief movement statistics. This tells us that by
assuming homogeneity in the measurement error, this gives us the upper bound for
the amount of measurement error needed to be consistent with the data.

Figure 11: Relationship between ∆ for a Dirichlet distribution centered around the
uniform distribution and excess belief movement statistics.

Figure 12 below plots the normalized change in beliefs for the survey respondent’s
best wage offer. The normalized change in belief is defined as

y2 − y1
|x2 − y1|

y1 and y2 is the subject’s expected the best wage offer they could earn over the
next four months on survey 1 and 2 respectively (that is, the response to survey
question “OO2a2”). x2 is the best wage offer received on survey 2.
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Figure 12: Normalized Expected Maximum Wage Changes by Signal Direction. Belief
variable here is the maximum annual salary the survey respondent expects. Error bars display 95%
confidence intervals around the mean.

Appendix E Excess Belief Movement Test

The table below replicates the excess belief movement test using only the re-
sponses from only the first two surveys. Although the excess movement statistics are
lower than when using all three surveys, they remain large and statistically signifi-
cant. Therefore, our main results are robust to using a shorter time horizon where
it is more plausible that an individual’s underlying wage offer distribution did not
change.

7



Statistic All Individuals Got Offer? Searched?
Yes No Yes No Unknown

m .6642 .7357 .6486 .6789 .6530 .7150
(.0149) (.0319) (.0162) (.0370) (.0136) (.0427)

r .1719 .2000 .1658 .1856 .1645 .1941
(.0061) (.0175) (.0062) (.0128) (.0066) (.0254)

X = m− r .4923 .5357 .4828 .4933 .4886 .5209
(.0161) (.0379) (.0173) (.0352) (.0155) (.0488)

Xnorm =
m

r
3.8634 3.6783 3.9122 3.6571 3.9705 3.6833
(.1619) (.3733) (.1754) (.2672) (.1843) (.5210)

p-value of t-test:
X = m− r = 0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Observations 2,456 440 2,016 588 1,671 197

Table 11: Excess movement statistics: Surveys 1 and 2 only. Notes: Clustered errors by
state in parentheses. Some of the subjects in our sample did not answer the question of whether they
searched, but we still include them here as they are included in our full sample estimate.

The following table presents our main Martingale test results including observa-
tions which were dropped from our final sample due to data quality or offer distribu-
tion stability concerns. The excess movement statistics remain large and significant
under either specification.

Statistic All Individuals Got Offer? Searched?
Yes No Yes No Unknown

m .9710 1.0863 .9309 1.0524 .9288 1.0177
(.0166) (.0328) (.0195) (.0315) (.0200) (.0431)

r .1950 .2225 .1855 .2069 .1879 .2103
(.0065) (.0146) (.0070) (.0104) (.0071) (.0201)

X = m− r .7759 .8638 .7454 .8455 .7409 .8074
(.0179) (.0315) (.0217) (.0317) (.0217) (.0443)

Xnorm =
m

r
4.9784 4.8822 5.0194 5.0876 4.9425 4.8389
(.1876) (.3086) (.2305) (.2779) (.2217) (.4709)

p-value of t-test:
X = m− r = 0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Observations 3,450 879 2,570 992 2,200 258

Table 12: Excess movement statistics: All observations included. Notes: Clustered errors
by state in parentheses. These results include individuals who listed annual wages or expectations
under $10,000, individuals who had one of their surveys in 2020, and individuals who moved (between
states) between surveys.
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