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Motivation

Providing different types of labor market information has been shown
to alter important aspects of individual labor market behavior,
affecting outcomes from how many jobs people find (as in Arni 2016)
to where they apply (as in Gee 2018).

The effectiveness of such policies is likely to depend on exactly how
people update their beliefs about what opportunities exist for them in
the labor market in response to new information they receive.
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Motivation

Many models of belief updating have been proposed which could be
applied to understand the specifics of updating in a labor market
context.

However, empirical job search data sources with belief (expectations)
questions remain rare, and it is only recently that these questions
have begun to be used more often. (Mueller & Spinnewijn 2023)

Unlike in the lab, we cannot directly control signal structure and
priors, making it more difficult to evaluate these models.
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Research Question

Research Questions

Main Question: How do people learn their own wage offer
distributions over time?

We assume that individual wage offer distributions are static, but
unknown.
Under this assumption, do individuals learn about wages in a biased
(non-Bayesian) way?
If so, how strong/what type are their biases?
Which existing method of modeling belief updating is most consistent
with empirical labor market data?
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Research Question

Methodology Overview

We use a nationally-representative survey (the Survey of Consumer
Expectations) that surveys each individual up to 3 times every 4
months.

We test for non-Bayesian behavior by adapting a test from recent
work by Augenblick & Rabin (2021).

We also do some individual-level analyses and find results consistent
with asymmetric updating.
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Research Question

Literature

Theoretical Search models
1 Model with known underlying distribution (Stigler 1961, McCall 1970,

Weitzman 1979)
2 Model with unknown underlying distribution (Rothschild 1978,

Rosenfield & Shapiro 1981, Talmain 1992, Li & Yu 2018, Potter 2021)

Empirical work has primarily focused on the first class of models due
to insufficient data on job searchers’ beliefs.

Recent empirical work related to learning in job search: Conlon,
Pilossoph, Wiswall & Zafar 2018 (estimate wage updating; key
methodological differences discussed later after discussion of how our
test works); Mueller, Spinnewijn and Topa 2021 (cross-sectional
analysis of expectations of unemployed by unemployment length);
Potter 2021 (a model with learning fits dynamics of time use data
from Great Recession)

Papers on non-Bayesian updating (Epstein et al. 2010, Grether 1980,
Hagmann & Loewenstein 2017, Ba 2022, Ortoleva 2012)
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Research Question

Contributions to the Literature

Provide an estimate of the prevalence of non-Bayesian updating in
the data which has some methodological advantages over previous
empirical work (fewer assumptions as explicit estimation of Bayesian
posterior is unnecessary) and which detects a new feature of the
non-Bayesian updating (movement and reduction).

Provide individual-level analysis which suggests asymmetric wage
updating responses to “happy” and “sad” news.

Distinguish which (non-Bayesian) updating rules are consistent with
the data.
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Martingale

Martingale Propery

Let the state space be Θ and set of signals X

Martingale Property: EX(gt+1(θ|x)|gt(θ)) = gt(θ)

Idea: before you observe the signal, the expected posterior has to
equal to prior
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Martingale

Competing Behavioral Models of Updating

1 Bayesian updating

g
bayes
t+1 (θ|xt+1) =

gt(θ)p(xt+1|θ)∫
θ ′∈Θ gt(θ ′)p(xt+1|θ ′)

2 Affine Transformation of Prior and Bayesian Belief (Epstein, Noor &
Sandroni 2010)

gbiast+1 (θ|xt+1) = (1− λ)gt(θ) + λg
bayes
t+1 (θ|x)

3 Exponential Non-Bayesian updating (Grether 1980)

gbiast+1 (θ|xt+1) =
gt(θ)

ap(xt+1|θ)
b∫

θ ′∈Θ gt(θ ′)ap(xt+1|θ ′)b

4 Affine Transformation of Reference Belief and Bayesian Belief
(Hagmann & Loewenstein 2017)

gbiast+1 (θ|xt+1) = (1− λ)µ(θ) + λg
bayes
t+1 (θ|x)
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Data Overview

Best offer estimate: Question text
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Data Overview

Best offer distribution: Question text
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Data Overview

Survey Timeline

Survey 1 Survey 3Survey 2

belief g2belief g1 belief g3wage offers x1 wage offers x2
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Data Overview

Overview of Data

Description Total
Got offer?
Yes No

Total observations (updates) 4,374 747 3,627
Number unemployed 159 46 113
Number employed 3,634 637 2,997

Number not in labor force 534 57 477
Missing employment status 47 7 40

Unique individuals 3,103 661 2,680

Date Range 3/2015-3/2020

Table: Employment status is defined as the status in the “before” period of the
before-after pair. Numbers of individuals in “Got offer?” categories don’t exactly
sum to totals because individuals could change statuses between periods; in such
a case, an individual would be counted in both categories for the “unique
individuals” measure, although this will not impact the other counts.
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Data Overview

Data Structure: Simplified Example

Period 1: Guess of average best wage offer is $100

90 < w ⩽ 100 100 < w ⩽ 110 110 < w ⩽ 120

p(·) 0.4 0.2 0.4

Table: Period 1 Beliefs

Period 2: Guess of average best wage offer is $90

81 < w ⩽ 90 90 < w ⩽ 99 99 < w ⩽ 108

p(·) 0.3 0.4 0.3

Table: Period 2 Beliefs

14 / 49



Data Overview

Data Structure: Simplified Example

Period 1: Guess of average best wage offer is $100

w ⩽ 100 w ⩽ 110 w ⩽ 120

p(·) 0.4 0.6 1

Table: Period 1 Beliefs

Period 2: Guess of average best wage offer is $90

w ⩽ 90 w ⩽ 99 w ⩽ 108

p(·) 0.3 0.7 1

Table: Period 2 Beliefs
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Data Overview

Data Structure: Simplified Example

Period 1: Guess of average best wage offer is $100

w ⩽ 90 w ⩽ 99 w ⩽
100

w ⩽
108

w ⩽
110

w ⩽
120

p(·) 0.4 0.6 1

Table: Period 1 Beliefs

Period 2: Guess of average best wage offer is $90

w ⩽ 90 w ⩽ 99 w ⩽
100

w ⩽
108

w ⩽
110

w ⩽
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p(·) 0.3 0.7 1

Table: Period 2 Beliefs
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Data Overview

Data Structure: Simplified Example

Period 1: Guess of average best wage offer is $100

w ⩽ 90 w ⩽ 99 w ⩽
100

w ⩽
108

w ⩽
110

w ⩽
120

p(·) 0.4 0.6 1

Table: Period 1 Beliefs

Period 2: Guess of average best wage offer is $90

w ⩽ 90 w ⩽ 99 w ⩽
100

w ⩽
108

w ⩽
110

w ⩽
120

p(·) 0.3 0.7 0.9 1 1 1

Table: Period 2 Beliefs
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Data Overview

Matching Graphs: Example CDF
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Data Overview

Method Wellness-of-Fit

Have tried different distributions/fittings (Gumbel (extreme value)
distribution, log normal, etc.)

One we are using now fits the data the best on average from what we
have tried so far, as measured by the average absolute error across all
bins.
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Model

Simple Model

One of the die is selected randomly.

You can only observe the tokens awarded, not the color of the die.

Given a 50-50 prior, the expected value from rolling a die is 20.

How will your expectation change after observing a 10-token
outcome?
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Model

Uncertainty in the Environment

The agent believes there is a set of possible wage distributions, F
(color of die)

True wage distribution is in F which are indexed by an ordered set
Θ ⊂ R
The agent has belief gt over θ at time t

We partition the wages into n wage bins {[a0, a1), [a1, a2), . . .
[an−1, an)}

πi
t =

Averaged over beliefs of distributions︷ ︸︸ ︷∫
θ ′∈Θ

gt(θ
′)

∫ai

ai−1

f(w|θ ′)dw︸ ︷︷ ︸
Probability of drawing
a wage within the bin
from distribution θ ′

dθ ′

If the updating rule used by g has the Martingale property, then so
will π.
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Model

2 States (Augenblick and Rabin, 2021)

Overview: Model of belief dynamics (multiple time periods)

2 states and state 1 occurs with probability π

Belief movement

mt1,t2(π) ≡
t2−1∑
τ=t1

(πτ+1 − πτ)
2

Uncertainty Reduction

rt1,t2(π) ≡
t2−1∑
τ=t1

πτ(1− πτ) − πτ+1(1− πτ+1)

= πt1(1− πt1) − πt2(1− πt2)
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Model

Many States (Augenblick and Rabin, 2021)

n states and state i occurs with probability πi

Belief movement

mt1,t2(π) ≡
n∑

i=1

t2−1∑
τ=t1

(πi
τ+1 − πi

τ)
2

Uncertainty Reduction

rt1,t2(π) ≡
n∑

i=1

t2−1∑
τ=t1

πi
τ(1− πi

τ) − πi
τ+1(1− πi

τ+1)

=

n∑
i=1

πi
t1(1− πi

t1) − πi
t2(1− πi

t2)
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Model

Test For Bayesianism (Martingale)

We denote Mt1,t2 and Rt1,t2 as the random variable for belief
movement and uncertainty reduction respectively

Statistical test: EMt1,t2 = ERt1,t2

Intuition: When there is small uncertainty reduction (not many or
weak signals or a tight prior), belief movement should be small

X = m1,2 − r1,2

Z ≡
√
n

s1,2
(m1,2 − r1,2)

n→∞−−−−−−−→ N(0, 1)

Xnorm =
m1,2

r1,2
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Model

Differences from Most Similar Paper

Conlon et al. (2018) also used the SCE data and has a similar
research question and has found that job searchers are non-Bayesian

Our method does not require explicitly estimating a Bayesian
posterior, while theirs does.

They do this by assuming that both prior and posterior beliefs over
log wages follow a normal distribution with known variance σ2, and
apply the corresponding conjugate prior formula to get the Bayesian
posterior:

Et+1(θ|xt+1) =
σ2µ+ σ2

0xt+1

σ2 + σ2
0

where σ2
0 can be estimated directly from the distributional question in

the data once log normality is assumed.

They allow σ2 to vary by whether an individual has earned a college
degree or not, and estimate it by estimating the variance of all
reported wage offers in the sample.
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Model

Estimate Contributions (Cont.)

Even if this ended up being a good estimate of the variance of the
wage distribution by education group, we must still assume that
individuals use education group variance in their updating for the
conjugate prior formulas to make sense.

However, the individual wage distribution for a college graduate who
is a CEO might be very different than a college graduate who is a
high school teacher.

Overall, there doesn’t seem to be a good reason to expect individuals
to individually update using such a broad group variance as a measure
of signal informativeness (or to expect them to know it).
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Model

Estimate Contributions

The main test we use in our paper sidesteps needing an explicit
measure of beliefs over signal (wage) informativeness while still
providing a test for whether individuals update in a Bayesian measure
on average.

It is also able to test for Bayesianism in individuals who did not receive
a wage offer, which was not possible under the previous method.
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Model

Martingale Test
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Model

Test Results

Statistic All Individuals
Got Offer? Searched?

Yes No Yes No

m .8480 .9060 .8357 .8494 .8336
(.0129) (.0305) (.0142) (.0257) (.0156)

r .1449 .1376 .1464 .1521 .1324
(.0058) (.0137) (.0064) (.0114) (.0070)

X .7031 .7684 .6894 .6973 .7013
(.0138) (.0330) (.0151) (.0276) (.0167)

Xnorm 5.8533 6.5831 5.7089 5.5831 6.2979

Observations 3,060 532 2,528 740 2,083

Table: Excess movement statistics: Log normal-fitted results. Standard errors in
parentheses.

29 / 49



Model

Result Interpretation

The test results are consistent with overreacting to signals and base
rate neglect in the Grether model.

Statistics have similar magnitude whether pooling, separating on
whether or not individual reported an offer, or separating on whether
individual searched within four weeks prior to survey.

This also remains when splitting the sample by age, education,
gender, and race groups.
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Robustness Test: Measurement Error

Measurement Errors

Measurement Error can potentially explain excess belief movement
even when agent is Bayesian (Augenblick & Rabin 2021)

Consider that the agent has a true belief of πi
t but reports a distorted

belief π̂i
t = πi

t + ϵit, where ϵit is the measurement error.

Assume that the measurement error term is mean zero with variance
σi 2
ϵ and uncorrelated with recent belief and error realizations

(E(ϵitπi
t) = E(ϵitπi

t−1) = E(ϵitϵit−1) = 0)

We show in our appendix that expected excess belief movement will
be equal to

∑n
i=1 2σ

2
ϵi
t
̸= 0
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Robustness Test: Measurement Error

Measurement Errors

Monte Carlo Simulation: 10000 simulations

Same number of observations as in our dataset.

6 states.

Prior is uniform distribution.

We pick a uniform distribution of symmetric posterior distributions
that is Bayes’ plausible to match the uncertainty reduction.

Measurement error is simulated by drawing from a Dirichlet
distribution with mean centered around the correct beliefs.

∆ ≡
∑6

i=1 |π
i
1 − πi

prior|
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Robustness Test: Measurement Error

Measurement Errors

Statistic Uniform Prior
with Matched

Belief Movement

X 0.5319
[0.5196, 0.5441]

Xnorm 5.3506
[5.1149, 5.6021]

∆ 0.9871
[0.9800, 0.9944]

Table: Monte Carlo Simulation
Results
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Test Result Implications

Competing Behavioral Models of Updating

We can reject updating rules with Martingale property

1 Bayesian updating

gt+1(θ|xt+1) =
gt(θ)p(xt+1|θ)∫

θ ′∈Θ gt(θ ′)p(xt+1|θ ′)

2 Affine Transformation of Prior and Bayesian Belief (Epstein et al.
2010)

gbiast+1 (θ|xt+1) = (1− λ)gt(θ) + λg
bayes
t+1 (θ|x)
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Test Result Implications

Updating Rules (Cont.)

3 Exponential Non-Bayesian updating (Grether 1980)

gbiast+1 (θ|xt+1) =
gt(θ)

ap(xt+1|θ)
b∫

θ ′∈Θ gt(θ ′)ap(xt+1|θ ′)b

4 Affine Transformation of Reference Belief and Bayesian Belief
(Hagmann & Loewenstein 2017)

gbiast+1 (θ|xt+1) = (1− λ)µ(θ) + λg
bayes
t+1 (θ|x)
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Directional Patterns

Directional Patterns

Under a standard Bayesian updating job search model in a Gaussian
updating framework, the mean of the posterior belief should always
be a convex combination between the prior mean and the wage offer.

In this case, a Bayesian agent will always update her prior mean in the
direction of an observed signal.
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Directional Patterns

Updating in Wrong Direction

We find two patterns in the data which do not follow this idea.

The first we call “wrong direction.”

In this case, the agent updates the mean away from the observed
wage signal(s).

We have some people who increase their reported (not fitted) wage
expectation after seeing a low-wage offer
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Directional Patterns

Example Wrong Direction Update

Fitted distributions displayed for illustrative purposes only;
measurement of the pattern uses only reported means, not fitted
means.
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Directional Patterns

Overshooting

The second pattern is called “overshooting.”

In this case, the individual updates the posterior mean beyond the
observed signal.
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Directional Patterns

Observed Patterns
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Directional Patterns

Pattern Counts

We find evidence for both patterns among those with offers.

About 15% of observations display overshooting, while about 11% of
observations display moving in the wrong direction (note also that the
categories are mutually exclusive).

However, we also found another pattern among these results.

41 / 49



Directional Patterns

Asymmetric Updating: Good vs. Bad News “Mistake”
Rates
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Zero-Probability Changes

Grether Model Implications

Grether (1980) model predicts that if 0 probability weight is assigned
in the prior, the posterior belief cannot be positive unless a = 0 (total
base rate neglect).

We have people who started with 0 probability on some wage values
but have a non-zero probability in the posterior.
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Zero-Probability Changes

Example: Zero to Positive Belief
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Zero-Probability Changes

Description of Zero-Probability Shift Identification
Methods

1 Subset method (nonparametric, lower bound):
The individual has a prior bin with 0 probability weight.
The individual has at least one posterior bin with positive weight
contained within the aforementioned prior bin.

2 Simulated method with threshold (parametric):
Use fitted posterior instead of reported posterior so bin definitions are
exactly the same between prior and posterior.
Since simulated posterior is log normal distribution, no range will have
exactly zero probability weight.
A threshold (e.g. 1%, 5%) is used to determine whether the simulated
posterior bin has non-zero probability weight.
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Zero-Probability Changes

Counts by Method

46 / 49



Zero-Probability Changes

Zero-Probability Shift Results

A significant portion of individuals are identified as updating a
zero-probability belief to a positive-probability posterior, regardless of
method used.
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Zero-Probability Changes

Conclusion

To the extent that individuals update wage expectations, they seem
much more willing to change the value they think their next offer will
be than to change how sure they are that the next offer will be that
value.

This result is inconsistent with updating rules which rely on the
Martingale property such as Bayesian updating and linearly combining
the prior and Bayesian posterior.

Among individuals who received offers in our data, individuals who
made updating “mistakes” tended to do so in a way that favored
more positive posterior wage expectations1

Therefore, non-Bayesian updating models which allow motivated
updates, such as Hagmann & Loewenstein (2017), may be useful in
modeling labor market updating.

1Assuming no systematic differences in non-wage news among such individuals.
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